当前位置:首页 > 教育资讯

麻省理工大学:数学家团队解决高维度上等角线的几何问题

在高维度上,有多少条线能以相同的角度成对分开?最近,几何学上的突破使人们对谱系图有了新的认识。

等角线是空间中通过一个点的线,其成对的角度都是相等的。想象一下二维的正六边形的三条对角线,三维的正二十面体的六个对顶点的连接线。然而,数学家们并不局限于三维空间。

麻省理工学院数学家团队图解决这个关于高维空间中线的几何问题。这是一个研究人员已经困惑了至少70年的问题。

他们的突破决定了可以放置的线条的最大可能数量,使这些线条能以相同的给定角度成对分开。

等角线的数学可以用图论进行编码。这篇论文为数学领域的谱图理论提供了新的见解,它为研究网络提供了数学工具。谱图理论会影响计算机科学中的重要算法,如谷歌用于其搜索引擎的PageRank算法。

解决方案中使用的关键数学工具之一是谱图理论。谱图理论解释如何使用线性代数的工具来理解图形和网络。图的“频谱”是通过将图变成矩阵并查看其特征值而获得的。

就像把一束强烈的光照在一个图上,然后检查出来的颜色的光谱。研究发现,发射的光谱永远不可能过于集中在顶部附近。事实证明,关于图形光谱的这个基本事实之前从未被观察到。

这项工作在光谱图理论中给出了一个新的定理:有界度的图必须具有亚线性的第二特征值多重性。

该研究论文题为"Equiangularlineswithafixedangle",已发表在《数学年刊》期刊上。

前瞻经济学人APP资讯组

参考资料:https://arxiv.org/abs/1907.12466

本文来自网络,不代表教育资讯立场,转载请注明出处。