当前位置:首页 > 教育资讯

求函数y=(32x^3+11x+7)^4的导数

主要内容:

本文通过幂函数复合函数求导法、取对数求导法等,介绍函数y=(32x^3+11x+7)^4的一阶导数和二阶导数计算的主要步骤。

幂函数导数法:

此时看成是幂函数的复合函数,用链式求导,即:

∵y=(32x^3+11x+7)^4,即y=u^4,u=32x^3+11x+7,

∴y'=4*u^3*u’x=4*u^3*(96x^2+11),

即:y'=4(96x^2+11)(32x^3+11x+7)^3。

取对数求导法:

y=(32x^3+11x+7)^4,两边取对数得:

lny=ln(32x^3+11x+7)^4=4ln(32x^3+11x+7),

两边同时对x求导,得:

y'/y=4*(32x^3+11x+7)'/(32x^3+11x+7)

y'/y=4*(96x^2+11)/(32x^3+11x+7),进一步变形有:

y'=4(32x^3+11x+7)^4*(96x^2+11)/(32x^3+11x+7)

=4(32x^3+11x+7)^3*(96x^2+11)。

二阶导数计算:

使用函数乘积求法:

因为y'=4(96x^2+11)(32x^3+11x+7)^3,再次对x求导,所以:

y''=4[192x^1*(32x^3+11x+7)^3+(96x^2+11)*3*(32x^3+11x+7)^2*(96x^2+11)]

= 4[192x^1*(32x^3+11x+7)^3+(96x^2+11)^2*3*(32x^3+11x+7)^1]

= 4(32x^3+11x+7)^2*[192x^1*(32x^3+11x+7)^1+(96x^2+11)^2*3]

取对数求法:

对y'=4(96x^2+11)(32x^3+11x+7)^3取对数有:

ln y'=ln[4(96x^2+11)(32x^3+11x+7)^3]

=ln4+ln(96x^2+11)+3*ln(32x^3+11x+7)

两边同时对x再次求导,则:

y''/y’=192x^1/(96x^2+11)+3*(96x^2+11)/(32x^3+11x+7),进一步化简为:

y''= 4(96x^2+11)(32x^3+11x+7)^3*[192x^1/(96x^2+11)+3*(96x^2+11)/(32x^3+11x+7)]

本文来自网络,不代表教育资讯立场,转载请注明出处。